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Abstract We report a benchmark calculation for the fuzzy c-means clustering
algorithm that can be used as a reference in theoretical and practical studies related
to classification methodologies. A full exploration of the hard-initialization space is
done for all possible different groupings on a simple fifteen-pattern system to describe
their stationary points. Numerical problems associated with the stopping criteria are
discussed in relation with the calculation of some validity indexes. All necessary
information to assure an easy reproduction of the obtained results is clearly reported.
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1 Introduction

Clustering is a process to partition a given set of data or objects into classes or clusters
having two fundamental properties: homogeneity within the clusters, i.e. objects that
belong to the same cluster have high similarity; and heterogeneity between clusters, i.e.
objects that belong to different clusters are very dissimilar The goal of any clustering
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method is the classification of a data set X, composed by n pattern, X = {x1, x2, . . .xn}
where each pattern is described by p properties, into c clusters (C1, C2, . . .Cc). The
pattern matrix U of dimension c x n, represented by U = [μij], i = 1, 2, . . . c and
j = 1, 2, . . . n, describes the membership degree of data x j to the cluster Ci . This
methodology has been successfully applied in various fields and numerous methods
of clustering have been proposed [1,2] that in general assign each data point of the data
set to only one cluster generating a crisp or hard partition. However, fuzzy clustering,
and in particular the fuzzy c-means algorithm (FCM) has clear advantages because
of its concept of fuzzy membership [3]. This algorithm belongs to the unsupervised
classification methods and thus, requires the number of clusters c as input. Once the
number of clusters has been selected, an initial U matrix is defined and an iterative
process is carried out to optimize an objective function J that includes Euclidean dis-
tance between data points and cluster centres. For the FCM algorithm, Bezdek et al.
[4] proved its convergence, at least along a subsequence, to either a local minimizer or
a saddle point of its objective function. Performance of iterative clustering algorithms
depends highly on initial membership values that condition convergence and produce
different local minima. Although some approaches have been described to overcome
this problem [5–9], most references do not address this issue or simple either a user-
specific or randomly selected initial points are used [10,11]. As stated in [12] “there
is no simple, universally good solution to this problem”. Despite of the importance
of the initialisation problem, at the author’s knowledge, any systematic study of the
possible hard initial values for an n-pattern problem has been reported up to the data.

The fuzzy c-mean method has been widely used in the chemistry field [13–19],
covering different application ranging from the analysis of molecular dynamic trajec-
tories of proteins and polypeptides [13,14] to Metabolomics [19], but none of these
works studied the problem in depth.

In this paper we report for the first time a full hard initialisation study for all possible
c-clusters in a 15-pattern system, describing all different local stationary points. The
obtained values are accurately described in order to make easier the results reproduc-
tion and its comparison with results derived from other approaches. Two widely used
validity indexes are also computed to provide reproducible values for these impor-
tant parameters. The paper is organised as follow: In the next section we review the
Fuzzy c-means clustering methodology, with a special emphasis on the computational
algorithm, and also on some validity indexes; next we describe how the full hard ini-
tial membership were generated and finally numerical experiments are presented and
discussed.

2 Fuzzy clustering algorithm

The original FCM algorithm that recognizes spherical clouds of points in a
p-dimensional space was firstly described by Bezdek [3,20–24]. This method attempts
to find a representative point for each cluster which is called prototype or centroid,
and the fuzzy partition matrix μi j by minimizing an objective function J . Despite
numerous modifications have been proposed from the original method [25–27], it still
remains widely used.
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Next we describe the basic FCM algorithm making special emphasis in the expla-
nation of when and how the values involved in the convergence process are calculated.

FCM algorithm

Step 1: Input the number of clusters c, the fuzzifier m and the test criterion to finish
the process ε, with ε = εJm , εμ or εv

Step 2: Set the iteration number k = 0 and initialize the fuzzy partition matrix
μ0

i j (i = 1, 2, . . .c; j = 1, 2, . . .n) satisfying:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 <
n∑

j=1
μi j < n f or i = 1, 2, . . .c (1a)

c∑

i=1
μi j = 1.0 f or j = 1, 2, . . .n (1b)

c∑

i=1

n∑

j=1
μi j = n (1c)

Step 3: Do step 4 for k = 0
Step 4: Compute fuzzy cluster centers vk

i (i = 1, 2, . . .c), Euclidean distance of data
to the cluster centres (dk) and objective function (J k

m) using:

vk
i =

∑n
j=1 (μi j )

m x j
∑n

j=1 (μi j )m
f or 1 ≤ i ≤ c (2)

dk
i j = ||x j − vi || f or 1 ≤ i ≤ c , 1 ≤ j ≤ n (3)

J k
m =

c∑

i=1

n∑

j=1

(μi j )
m ||x j − vi ||2 (4)

Step 5: Calculate the fuzzy partition matrix for the iteration k
μk

i j (i = 1, 2, . . .c; j = 1, 2, . . .n) as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μk
i j =

[
c∑

s=1

( ||x j −vi ||2
||x j −vs ||2

) 1
m−1

]−1

i f ||x j − vs || > 0 ∀ j (5a)

μk
i j = 1 i f ||x j − vi || = 0 (5b)

μk
i j = 0 i f ∃s �= i ||x j − vs || = 0 (5c)

Step 6: If the selected convergence criterion ε is satisfied go to Step 7;
else go to Step 4.

Step 7: Output and store information about final values for vi , μi j , di j and Jm .
Step 8: Calculate Hessian and performance measures.
Step 9: Stop
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In Step 1 convergence criterions εJm , εμ and εv are defined as:

max |J k
m − J k−1

m | ≤ εJm ; max |μk
i j − μk−1

i j | ≤ εμ; max |vk
j − vk−1

j | ≤ εv

Very small values of εJm are necessary to achieve a good convergence on vk
i and

μk
i j values. This fact must be taken into account to obtain accurate calculations of

performance measures.
Step 3 is separated from step 4 in the scheme of the FCM algorithm to remark the

fact that we need to have all necessary values to initiate the iterative process.

In Step 8 the Hessian Hi j = ∂2 Rm(ν)
∂νi ∂ν j

of the reformulated metric Rm(ν) [28] is
calculated using

Rm(v) =
n∑

j=1

[
c∑

i=1

||x j − vi ||2/(1−m)

](1−m)

and its eigenvalues obtained to characterise the stationary points [29,30]. Also in this
step validity indices introduced by Xie and Beni [31] and Fukuyama and Sugeno [32]
are calculated as:

VXB = Jm(u, v)/n

Sep(v)
=

∑c
i=1

∑n
j=1 um

i j ||x j − vi ||2
n mini �= j ||vi − v j ||2

VFS = Jm(u, v) − Km(u, v) =
c∑

i=1

n∑

j=1

um
i j ||x j − vi ||2−

c∑

i=1

n∑

j=1

um
i j ||x j − v̄||2

where v̄ = 1
c

∑c
i=1 vi is the mean of the cluster centroids.

3 Generation of initial membership

Although it has been demonstrated that the iterative process used to solve the FCM
equations always converges to a stationary point, it seems clear that there is not a gen-
eral initialization method that can be used for all theoretical or real problems. How-
ever, different methods have been suggested for initializing cluster centres, basically
devoted to the K-means algorithm [8,9,33–35]. Also, a comparison of four different
initialization methods for this algorithm has been reported [36] suggesting the random
initialization as one of the best methods.

Thus, to try to overcome this problem, an exhaustive hard-generation of initial
points has been done. However, if we define a hard c-partition space for data X as the
matrix set

Mc =
⎧
⎨

⎩
U |μi j ∈ {0, 1} ,

c∑

i=1

μi j = 1, 0 <

n∑

j=1

μi j < n

⎫
⎬

⎭
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Fig. 1 Graphical representation of the fifteen data points used to perform the fuzzy c-means calculations

then, any matrix U ∈ Mc is a hard c-partition with cardinality

ηMc = 1

c!

[
c∑

i=1

(
c
i

)

(−1)c−i i n

]

It is easy to see that for a given c-partition this number becomes unaffordable when
the number of data points increase. Thus, to retain the cardinality of the problem in
a computational feasible dimension, it is necessary to study a reasonable small sys-
tem. A dimension of fifteen was considered adequate to maintain equilibrium between
the number of data points and the cardinality. In Fig. 1 it is shown a graphical rep-
resentation of the selected points including its numerical values for reproducibility
purposes. Cardinality for all possible clusters that can be generated from fifteen data
points is showed in Table 1. Although it includes big numbers these magnitudes are
still computationally affordable..

Different computational approximations were tested to generate all hard initializa-
tion possibilities for a given c-partition, but finally approximation showed in Fig. 2 was
used. Concretely, an example of fourth clusters (N_clus = 4) and fifteen data points
(N_data = 15) is showed. This approximation, although time consuming, is affordable
from a computer memory resources point of view and the program works storing all
necessary data in memory. Thus, once the number of clusters (N_clus) for a given
number of data points (N_data) has been selected, the program proceeds as follows:
Firstly, all possible non-redundant distributions of the data between the clusters are
generated, annotating those clusters with the same occupation in order to generate only
non-redundant combinations (Fig. 2a). Next, all possible combinations of N_data over
all cluster occupations appearing in any of the distributions are generated and stored in
main memory (Fig. 2b). Finally, N_clus nested do are done (Fig. 2c). Inside each do, a
test to discard non-unique hard occupations is performed and do limits are modified to
take into account possible equal cluster occupations. In Fig. 2d a combination of data
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Table 1 Cardinality values for
all possible clusters that can be
generated from fifteen data
points

Number of clusters Cardinality

2 16,383

3 2,375,101

4 42,355,950

5 210,766,920

6 420,693,273

7 408,741,333

8 216,627,840

9 67,128,490

10 12,662,650

11 1,479,478

12 106,470

13 4,550

14 105

Fig. 2 A schematic description of the process used to generate a full hard-distribution for a case with four
clusters and fifteen data points. a Generation of the 27 possible non-equivalent distributions. b Generation
of all possible combinations for each cluster occupation. c Four nested do to compare occupation of each
combination for each cluster. d An example of one combination for each cluster that generated a proper
partitioning

that generated a proper cluster distribution is showed. At the end of this procedure, the
occupation vector for each possible value of the hard N_dataN_clus partition is stored
in a file that can be used as input in the fuzzy c-means computer program.
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4 Numerical experiments and discussion

As the main goal of this article is to generate a reference calculation for the FCM
methodology, our first objective was to asses that our reported values were really sta-
bles. Thus, we tested convergence of the validity indices of Xie and Beni (VFS) [31]
and Fukuyama and Sugeno (VFS) [32] at the end of the iterative process of the FCM
algorithm as a function of different convergence criterions. In Tables 2 and 3 we show
the VXB and VFS values obtained stopping the FCM iterative process with different
convergence criterions (εJm , εμ ) and using different precision ε. As it can be seen,
both indices clearly present very different behaviour. Thus, VXB index reaches a stable
value at high precision values independently of the criterion used to stop the iterative
process. However, the VFS index only reaches convergence in three decimal numbers
at very small values of ε reflecting the more complex structure of this validity index.
As expected, when using εJm smaller values are needed to obtain a desired precision
than when using the εμ criterion. We can conclude that an important dispersion is
presented in the obtained results, mainly for big convergence criterion values and
that this variability is index dependent. Thus, to compare validity indices for different
clusters, in order to locate the best number of clusters, the use of low values of ε seems

Table 2 Values of Xie and Beni validity index (VXB) for our data using c = 2, m = 2.0, 16, 383 full
hard initial trials and different convergence criterion defined as (1) ε = max|Uij(n) − Uij(n − 1)| or (2)
ε = max| − Jm(U,v)(n) − Jm(U,v)(n − 1)|
Convergence Maximum (1) Minimum (1) Maximum (2) Minimum (2)
criterion (ε) VXB VXB VXB VXB

10−2 0.05527 0.05517 0.05521 0.05519

10−3 0.05520 0.05519 0.05520 0.05520

10−4 0.05520 0.05520 0.05520 0.05520

Five decimal numbers are showed in all cases for comparison

Table 3 Values of Fukuyama and Sukeno validity index (VFS) for our data using c = 2, m = 2.0, 16,383
full hard initial trials and different convergence criterion defined as (1) ε = max|Uij(n) − Uij(n − 1)| or
(2) ε = max| − Jm(U,v)(n) − Jm(U,v)(n − 1)|
Convergence
criterion (ε)

Maximum (1)

VFS

Minimum (1)

VFS

Maximum (2)

VFS

Minimum (2)

VFS

10−2 −9,194.04171 −9,245.77509 −9,226.00548 −9,236.23064

10−3 −9,229.18765 −9,236.01727 −9,230.62347 −9,233.68238

10−4 −9,232.36778 −9,232.98419 −9,232.05999 −9,232.98419

10−5 −9,232.68238 −9,232.73777 −9,232.51010 −9,232.79124

10−6 −9,232.71375 −9,232.71882 −9,232.65184 −9,232.73777

10−7 −9,232.71689 −9,232.71736 −9,232.69664 −9,232.73777

10−8 −9,232.71720 −9,232.71727 −9,232.71070 −9,232.72294

10−9 −9,232.71724 −9,232.71724 −9,232.71517 −9,232.71882

Five decimal numbers are showed in all cases for comparison
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critical, independently of the specific criterion used. Moreover, the use of a criterion
based on membership values seems to be the best choice (similar results were obtained
using εν as convergence criterion. Data not show). To minimise possible errors derived
from the selection of the convergence criterion, all reported calculations were obtained
using a value of εμ = 10−8. A value of m = 2.0 and a maximum of 500 iterations
for the convergence process was uses anywhere. As stationary points with negative
eigenvalues of Rm(ν) do not represent logic partitions, its validity indices were not
calculated. On the other hand, two solutions were considered different if they differs
in more than εν .

Calculations for two clusters involve 16,383 possible values for a full hard initial-
ization of memberships (see Table 1). In this simple case, only two stationary points
were located by the FCM algorithm (see Table 4). The first one, with all the eigen-
values of Rm(ν) positives, contains points 1 and 2 in the first cluster and all the other
in the second cluster. The second one, with one negative eigenvalue of Rm(ν), has an
equal occupation of μi j = 0.5 for all data; that is, the two cluster centres are located
at the same point (59.00000, 25.00000). It is worth to note that we use a value of
μi j, hard = 0.5 to transform a fuzzy partition into a hard partition. Thus, if there is not
an occupation greater than this value for a point j, we consider that this point belong
to a fuzzy distribution along the most representative clusters.

Three stationary points were located for the three clusters case: one with zero
negative eigenvalues of Rm(ν) and two with one negative eigenvalue. The last two
stationary points have two equal cluster centres and one different. The first one, with
all the eigenvalues of Rm(ν) positives, contains points 1 and 2 in the first cluster, points
13, 14 and 15 belong to the second cluster and all the remaining points are included
into the third cluster.

Two stationary points with zero negative eigenvalues of Rm(ν) were located for the
four clusters case whose hard occupations are 1–2, 3–8, 9–13, 14–15 and 1, 2, 3–12,
13–15 for the first and second stationary points, respectively. For this case, there are
some stationary points with two degenerate negative eigenvalues. When this occurs,
three clusters centres have the same value. When the two negative eigenvalues are not
degenerated, two pair of equal clusters centres or two equal clusters centres exists.
One negative eigenvalue indicates that two equal clusters centres exist.

For the five clusters case, three stationary points with zero negative eigenvalues
of Rm(ν) were located. The first and third stationary points, in increasing evaluation
function values, have as a hard occupation of 1–2, 3–6, 7–9, 10–13, 14–15 and 1,
2, 3–8, 9–13, 14–15. However, for the second stationary point, a hard occupation is
not possible using the abovementioned μi j,hard hard limit value. Thus, points 7 and
8 have an occupation of 0.38838 and 0.48284 for the second and third clusters being
the other points distributed over the different clusters as 1–2, 3–5, 9–12, 13, 14–15.

The six clusters case has the biggest cardinal value and sixteen stationary point
were located, ten of then having zero negative eigenvalues of Rm(ν). The evaluation
functions of the two best stationary points have very similar values (138.37079 and
138.73261) differing in the distributions of points between the clusters. Thus, for the
first one, point seven has fuzzy occupation distributed in clusters two, three and four
(with 0.24617, 0.26005 and 0.40620 μi j values) with the other points having a hard
occupation of 1–2, 3–6, 8, 9–12, 13, 14–15. For the second one, we can assign a hard
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occupation as 1–2, 3–5, 6–8, 9–12, 13, 14–15. Another interesting stationary point
corresponds to the most populated distribution. This distribution has points seven and
eight with fuzzy occupation (0.41282 and 0.32125) over clusters three and four and
the other points with a hard occupation of 1–2, 3–5, 6, 9, 10–13, 14–15.

As it can be seen in Table 4, as the number of cluster increases, the number of located
stationary points increases. This is also true for the number of stationary points having
all its Rm(ν) eigenvalues positives. On the other hand, up to five clusters the number
of evaluations that fail into the smallest evaluation function is clearly bigger than the
other possibilities. Thus, it is expected that any reasonable initialization method would
conduct easily to the right solution.

However, when the number of clusters is set to 6, the number of evaluations that fail
into the smallest evaluation function value is not the most important. There are other
stationary points with higher number of occurrences. As a practical test we performed
a calculation with 5×103 hard-random initializations to compare with our full results.
The two smallest stationary points appeared 536 and 168 times respectively and the
most populated 1795 times. Another remarkable point was that only ten stationary
points were located, but corresponding exactly to the ten having zero negative eigen-
values of Rm(ν). On the other hand, a calculation with 105hard-random initializations
adds only one stationary point with a negative eigenvalue of Rm(ν) to the ten located
in the smallest test.

For cases with a number of clusters greater than six, the number of stationary points
found is really important. For this reason, only the one with the smallest evaluation
function value for each number of clusters is showed in Table 5. In these cases, even
the best partition need the use of a fuzzy occupation.

Results from the present particular system indicate that every time a stationary point
has negative eigenvalues for Rm(ν), cluster centre values are not unique. Thus, this
fact can also be used to asses the validity of the stationary point located.

Table 5 Representative data of the obtained results using a full hard-initialisation procedure for seven to
fourteen clusters

Number of
clusters

Stationary
points (1)

Objective
function

Number of
evaluations
(2)

Smallest
eigenvalue
(3)

VXB VFS

7 176/31 97.94157 43,470,701 1.61093 0.08080 −9,338.55509

8 466/68 71.29311 36,186,836 0.37056 0.07810 −9,361.57394

9 937/105 49.89783 3,309,444 0.45042 0.05276 −9,483.72244

10 1119/122 37.13382 981,138 0.71280 0.05738 −9,482.79322

11 819/113 25.15625 40,712 0.73422 0.06702 −10,046.92061

12 350/74 14.39228 3,994 1.44314 0.03836 −10,090.23500

13 70/31 7.926580 755 1.52584 0.02115 −10,115.68385

14 10/7 1.992189 27 2.00000 0.00531 −10,228.97848

Only the best stationary point with no negative eigenvalues for each distribution is showed. (1) Total number
of stationary points and number of stationary points with no negative eigenvalues. (2) Number of evaluations
standing for the number of times a particular solution appears over the total number of initial points. (3)
Smallest eigenvalue of Rm (ν)
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Another point to remark is that for distributions up to five clusters, all initializa-
tion points converged in the predefined number of iterations to some stationary point.
However, from six to ten clusters systems many initial points fail to converge. As an
example, for the six cluster case, 88,515,155 initial points do not converged.

As it is expected, evaluation function always decreases with the number of clusters.
However, validity indexes have very different behaviour. Thus, XB validity index has
a minimum value at c = 3, increases up to c = 5, has another minimum at c = 9,
increases slightly its value and finally decreases until the end. On the other hand, FS
validity index has a minimum value at c = 2, another minimum at c = 4 and decreases
more ore less continuously to the end.

It is important to note that validity indexes values were only calculated for the
solution with the best evaluation function. An important point but out of the scope of
this paper, is to analyse the behaviour of different validity indexes when taking the
best validity index from all the good solutions.

Complete calculation for c = 6 took 26 days in our Intel � XeonT M 2.8GHz per-
sonal computer using the Intel � 10.1.015 FORTRAN compiler. The computer time
needed to carry out this calculation is a clear indication of the difficulty to do this full
calculation for bigger systems. However, even for this simple system, the complexity
appears when the number of clusters is big and thus, the present results can be used
as a test of effectiveness for other faster initialization methods.

Full numerical results for all the studied cases are available upon request to the
authors.
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